Incarnate: We Might Have First-Ever Detection of a Fast Radio Burst in Our Own Galaxy.

Saturday, May 2, 2020

We Might Have First-Ever Detection of a Fast Radio Burst in Our Own Galaxy.

We Might Have First-Ever Detection of a Fast    Radio Burst in Our Own Galaxy.

A Milky Way magnetar called SGR 1935+2154 may have just massively contributed to solving the mystery of powerful deep-space radio signals that have vexed astronomers for years.
On 28 April 2020, the dead star - sitting just 30,000 light-years away - was recorded by radio observatories around the world, seemingly flaring with a single, millisecond-long burst of incredibly bright radio waves that would have been detectable from another galaxy.
In addition, global and space X-ray observatories recorded a very bright X-ray counterpart.
Work on this event is very preliminary, with astronomers madly scrambling to analyse the swathes of data. But many seem in agreement that it could finally point to the source of fast radio bursts (FRBs).
"This sort of, in most people's minds, settles the origin of FRBs as coming from magnetars," astronomer Shrinivas Kulkarni of Caltech, and member of one of the teams, the STARE2 survey that also detected the radio signal, told ScienceAlert.
Fast radio bursts are one of the most fascinating mysteries in the cosmos. They are extremely powerful radio signals from deep space, galaxies millions of light-years away, some discharging more energy than 500 million Suns. Yet they last less than the blink of an eye - mere milliseconds in duration - and most of them don't repeat, making them very hard to predict, trace, and therefore understand.
Potential explanations have ranged from supernovae to aliens (which, sorry, is extremely unlikely). But one possibility that has been picking up steam is that FRBs are produced by magnetars.
These are a particularly odd type of neutron star, the extremely dense core remnants left over after a massive star goes supernova. But magnetars have much more powerful magnetic fields than ordinary neutron stars - around 1,000 times stronger. How they got that way is something we don't understand well, but it has an interesting effect on the star itself.
As gravitational force tries to keep the star together - an inward force - the magnetic field is so powerful, it distorts the star's shape. This leads to an ongoing tension between the two forces, Kulkarni explained, which occasionally produces gargantuan starquakes and giant magnetar flares.

 

No comments:

Post a Comment